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Statistics of confined self-avoiding walks: 11. Entropy and 
pressure of confinement 
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CNRS lnstitut Charles Sadron, 6 rue Roussmgault, 67083 Strasbourg Cedex, France 

Received 5 May 1994, in final form 21 September 1994 

Abstract. Self-avoiding walks (SAWS) up to 198 steps and random-Right walks (RFWS) up 
to  598 steps were computer generated. The entropy change upon confinement of the walks. 
as well as the pressure exercised by corresponding chains obeying Hamiltonian mechanics 
on the surface of the confining spheres. was derived irom the Monte Carlo data foor the 
'compactness' parameter IY of the walks. II appropriate reduced radii PO= R / ( r . )  are intro- 
duced. where ( r )  is the mean end-to-end distance. it is round, in accord with theory, that 
a plot of the entropy change AS versus pol for RFWS is linear. The same is also found to 
be true for SAWS, though in a somewhat more limited po range. The quantity PV,IKT, where 
P is the pressure, V lhc volume of the confining boundary. T the absolute temperature, 
and K is Boltzmann's constant, is also found to vary lincarly with p$;'. for both kinds of 
walks. in accord with the Edwards-Freed theory. The general conclusion to be drawn from 
the present paper and also a previous one, is that ifproper reduction lengths are introduced 
foor SAM and RFW, (respectively. NOr9' and 0.922 NO'). then the general properties of 
confined SAWS and R Y W S  are quite comparable. These properties include chain dimensions, 
concentration profiles, entropy change upon confinement, and finally pressure. 

1. Introduction 

In  a previous article [ I ] ,  using Monte Carlo (MC) simulations, the dimensions and 
concentration profiles of random-flight walks (RFWS) and self-avoiding walks (SAWS) 
confined inside spheres of varying diameter were reported. In the present article, the 
entropy and related quantities of such walks are presented. 

The problem of the entropy of RFWS confined in various geometries, including 
spheres, was addressed analytically by Casassa [2]. Sometime later, Edwards and Freed 
[3], and Collins and Wragg [4], addressed the equivalent problem of R F W ~  confined 
inside a cube. Cifra el a/ [5] made MC simulations of SAWS confined inside a cube, and 
determined the partition function and thus the entropy of such walks. Analytical. exact 
enumeration. and Monte Carlo studies of confined chains, whether RFW or SAW, are 
numerous (2-221, however, it seems that the specific problem of the spherical boundary 
has been for some reason neglected. The motivation or background of many of these 
studies is in fact the adsorption of polymers on a surface, and therefore the constraint 
considered in such cases is one or two parallel plane surfaces. On the other hand, the 
entropy problem inside spheres, is important in gel permeation chromatography, for 
chain polymerization inside small droplets, and more generally for the thermodynamics 
of polymer chains inside droplets. as this happens in microemulsions [23]. The present 
MC study of chains confined in spheres should, however, be primarily viewed as a study 
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in its own right of walks confined inside a passive (zero-infinite potential) boundary 
of spherical shape. 

The computational software and methods used in this article are the same as in the 
previous article [I] and will not be repeated here. I n  particular, the reader is referred 
to [ I] for the basic features of absorbing (AS) and reflecting (RS) statistics. For conveni- 
ence, we remind here that the attrition A ( N ,  R )  is the probability of failure of an 
initiated walk. In  AS and for SAWS, the attrition Ans(N, R )  of an N-step walk inside a 
sphere of radius R originates in that a given lattice site cannot be visited twice by the 
walk being generated, and by the fact that the walk cannot cross the surface of the 
sphere. In reflecting statistics (RS), the attrition Ans(N,  R )  originates in the fact that 
the SAW being generated may become trapped inside a nest. ARs is usually a negligible 
quantity, unless the dimensions of the bounding surface become comparable to or 
smaller than the mean dimensions of the free (unbounded) N-step walk. In  any case, 
ARS is always considerably smaller than AG,  and therefore, in order to save computa- 
tional time, RS will generally have to be used. 

We also remind the reader of the definition of the ‘compactness’ parameter W, 
occurring in RS [ I ,  24,251 : 

A Jacckel and J Dayantis 

Here 111 represents in how many cases there were, for chain j i n  the sample, i possibilities 
to continue the generation process of the walk; S is the sample size, and Zmax is defined 
through : 

Zm,.=6X 5 N - ’  (SAWS) (16) 

&,,= (RFWS). (IC) 

2. Theoretical relationships 

In order to analyse and correlate the Monte Carlo data, a number of theoretical relation- 
ships are needed. First, a Monte Carlo estimate of the number Z(N,  R )  of distinct 
configurations of the N-step confined walk inside the sphere R is required. 

In AS, the solution to this problem is obvious, since. if AAs(N, R )  is the attrition, 
one clearly has for the mean number of configurations per bounded lattice site: 

ZJN, R)=Zm,.(N)[I-Ans(N, RI1 (2) 

where Z,,&V) is the number of configurations of the free random-flight walk of N 
steps, given in (IC). The total number Z ( N ,  R )  of distinct N-step configurations inside 
the sphere of radius R containing k lattice sites is then: 

Z ( N ,  R ) = & ” ( N ) [ l  - A A S ( N ,  R)lk. (3) 
In  KS, Z ( N ,  R )  may be estimated through the expectation E( IY) of the W ( N ,  R )  

parameter as follows: let us assume that using RS we start generating N-step walks 
starting from lattice sites chosen at random inside the sphere R. Let us further assume 
that in a total sample of S trials, S. have succeeded and S-S, have failed (=the walk 
get trapped inside a nest before being completed). If id is the weighing factor of walk 
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j i n  h e  sample. then the MC expectation of W is 
S 

Eh‘c( W ) =  S I { id+ , w 3 .  (4) 
, j =  so + I 

Now, the failing walks are not counted in  MC statistics, and therefore the second sum 
i n  the RHS of equation (4) is zero. Thus 

where WMc is the Mc-obtained mean value of the w’s. On the other hand the theoretical 
expectalion of M’is 

Z(” 

,=I 
E,h( CZ’) = 1 p;w’ (6)  

where pi is tlie probability of constructing the specific walk j ,  where j covers all the 
range of accessible configurations. Now p,=l i . ,p( j /s) ,  that is p ;  is equal to the product 
of the probabilityp. of starting a walk at the lattice site s, by the conditional probability 
p ( j / s )  of obtaining configuration j ,  if it is known that the starting site s has actually 
been chosen. Since a11 starting sites have to be taken with equal probabilities, the first 
probability is equal to k - ’ ,  where k is the number of lattice sites bounded by the sphere. 
The second probability is 

p (  j / s )  = n (;I-”: (7) 

where n: is the number of occurrences where there have been i possible directions to 
continue generating the walk. From equations ( I )  and (7)  it is seen that 

i i ( j / s ) = ( i i , ’ Z ~ ~ ~ ) - ’ .  (8) 

Elh( IC’) = Z/kZ,,,, . ( 9 )  
Now the theoretical and MC values of the expectation E ( W )  should be approximately 
equal quantities. (The deviation due to statistical fluctuations of EMc( W )  may be 
reduced by increasing tlie MC sample S ) .  One then has, from equations ( 5 )  and ( 9 )  the 
following estimate for Z ( N ,  R): 

Combining equations (6) and (8) one finds 

Z(N, R)=Z,,,;,,(N)[I - A n s ( N ,  R)]CV(N, R)k.  (10) 

This is the basic relationship we shall use in the following; i t  constitutes an elaboration 
of the general relationsliips given in [24]  and [ 2 5 ] .  The mean number of configurations 
per lattice site is equal to 

( 1 1 )  

From equation (IO) the entropy of a n  N-step chain ( a  chain being a walk whose 
steps are interconnected) inside the sphere R, provided il obeys Hamiltonian mechanics, 
is given by 

( 1 2 4  

Zp(N, R)=Zmh(N)[I -ARs(N. R)lW(N, x). 

S ( N .  R ) / K =  In Z ( N ,  R) 

where K is Boltzinann’s constant. 
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Similarly. the mean entropy per lattice site inside the boundary is given by 

S,,(N, R ) / K = l n  Z J N ,  R). ( I7-h) 

The above relationships (10) to (12) are general. They are valid for SAWS and for 
RFWS as well, provided that the proper values for the attrition A and the compactness 
pnranieter IV are used. They are also valid whether the walk is free or  confined, and 
for any configurations of bounding surface. 

We can now consider the number of configurations of the free (unbounded) walk 
per lattice site: 

(13)  

For an unbounded RFW the attrition is zero and the compactness parameter equal to 
one, so that in this case Z J N ,  m)=Zmrrr as expected. This is no longer true for an 
unbounded SAW, though in this case for most lattices the attrition ARs is quite sinall 
and thus negligible. 

From ( I  I )  and ( 1  3) one has for the entropy cliange per lattice site upon confinement 
of  a free walk: 

Z J N .  CO)=z,",.[I -A,s(N, m)lIt'(N, CO). 

A S / K = [ S , ( N ,  R )  - S , ( N ,  m)]/K=In[Z,(N, R)/Z,,(N, CO)] 

=In{[l-A(N.R)I~(N.R):[l-A(N,~)])1/(N, CO)} ( 140) 

where for simplicity in the attrition the subscript RS has been dropped. I f .  as generally 
happens when the radius of the sphere is large with respect to the chain dimensions, 
both A ( N ,  CO) and A(N,  R )  are small. one can simply write: 

AS/K=In[W(N, R)],'(W(N, m)]. (14b) 

Relations (14) refer to the mean entropy change per lattice site. since the actual entropy 
of chains originating i n  specific bounded lattice sites depends on the specific site 
considered. 

I t  follows from classical statistical mechanics that 

P= - (r 'F/r?V)r= T(SS/SV)T=KT{(a/r?V) In[Z(N, R ) ]  

= [KT,!4nR2](S/aR) ln[Z(N, R)]. (15) 

Here P i s  tlie pressure exercised by the chain upon the spherical boundary, Fis the free 
energy, V the volume, T the absolute temperature, and Z ( N ,  R) is given by equation 
(10). 

Beyond the comparison of the properties of N-step confined chains with or without 
excluded volume, i t  may be of some interest to compare the properties of an N-step 
chain wi th  a gas of N independent molecules, with or  without excluded volume (the 
latter case corresponding to [lie perfect gas). Since we used a discrete lattice to generate 
our N-step chains, the comparison should proceed using the corresponding relationships 
for a gas, the molecules of which are constrained to occupy discrete lattice sites. With 
this assumption. if tlierc are k lattice sites within the sphere of radius R. the entropy 
of N independent molecules experiencing excluded volume is given by 

(16) 

where, to obtain equation (16). indiscernibility of the molecules has been assumed, and 
Stirling's approximation for tlie factorials used. The pressure follows by introducing 

S/K=In[k!/(k- N)!N!]=-{(k- N )  In[(k - N ) , ' k ] +  N In[N/k]} 
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(16) into (15): 

P = - K T ~ ~ [ I  -N/k]. (17) 

S/K= In[kN/N!] (18) 

I n  the absence of excluded volume, the entropy is given by 

and correspondingly the pressure is 

P= KTNIk. 

If the number of lattice sites is nearly proportional to the volume I’of the sphere, the 
perfect gas law PV= NKT follows from equation (19). However, for the relatively small 
sphere volumes occurring in our calculations, the proportionality is only approximate, 
and therefore it is preferable to calculate the entropy and pressure of N confined 
independent gas molecules using equations (16) to (19). 

3. Monte Carlo results 

From equations (3) and (IO) one obtains: 

lv=(l - A h a ) / (  1 - A R S )  (20) 
a relationship relating the compactness parameter to the attritions in absorbing and 
reflecting statistics. This relationship has been checked for various values of po, where 
po is the reduced radius of the confining sphere, that is the radius R over the mean 
end-to-end distance ( 1 . )  of the free chain 

In tables 1 and 2 the W parameter is tabulated as a function of PO, for SAWS and 
RFWS, respectively, and for step lengths ranging from 18 to 58 steps. These tables also 
display the corresponding square standard deviations a?,,= (w2) - (w) ’ .  

From tables 1 and 2 for MI, the analogous tables for the entropy change A S / K  upon 
confinement of the chain, and the pressure P exercised by the chain on the bounding 
surface, as  a function of po (rather, pi’, see below) are easily established. To this end, 
equations (lo), (12a ) and (15) have to be used. As a consequence of this. the inforhia- 
lion provided by the latter tables is already contained in tables I and 2, and thetefore 
such tables would be somewhat redundant. For this reason, only the corresponding 
diagrams will be given, with the exception of P V I K T ,  which for convenience is tabulated 
in table 3. I n  table 4, the parameters of the linear regressions in the linear part of the 
plots of A S , , = f ( p i 2 )  are tabulated (see the discussion). 

111 figures I and 2, the entropy variation per lattice site upon confinement of a SAW 

or a RFW is given, as a function of p i ’ .  pi’ has been chosen as variable in these figures 
instead of p o .  because it is known from theory [?I .  that for RFWS, when the radius of 
the confining sphere approaches the dimensions of the free chain, the entropy change 
A S  is linear in this variable. Figure I is concerned with small p i 2  values (large R radii), 
while figure 2 is concerned with large p i *  values (small R radii). Figure 3 displays the 
overall entropy variation, the quantity relevant for calculation of the pressure through 
equation (15). Finally, figure 4 shows the pressure felt by the sphere boundary when 
an N-step SAW or KFW chain, obeying Hamiltonian mechanics, is confined inside 
the sphere. For comparison, the pressures corresponding to N independent (gas-like) 
molecules, with or withoul excluded volume, is also given. 



T N E  I. Compactness paramcler It' for SAWS. as B function of tlic number of slcps in tlie 
coiilincd walk and the reduced radius of thc confining sphere. Below the W values. the 
squ;we <tand:ird deviations ob.ar.c also listed All ramplc S i m  in this tablc and everywhere 
else: IO' clinins. 

N 18 28 38 48 58 
< I . )  5.52 7.18 8.63 9.89 I I .06 

la 
r 4 . 8 8 ~ 1 0 '  2 . 7 4 ~ 1 0 '  1 . 4 9 ~ 1 0 '  7 . 9 8 ~ 1 0 ~  4 . 3 3 ~ 1 0 '  

6 .69X102 4 .68X102 2 . 4 5 X 1 0 2  1.10X10 4.76X10 ' 
8 . 8 O X l O :  4 . 5 7 X l O '  2 . 0 9 x 1 0 '  8 .8OxlO'  3 . 5 1 x 1 0 '  

3 3.18x lO ' 1 . 7 4 X l O '  9.42x10 5 .07x10 '  2.74x10 ' 
8.70x10" 4 . 3 1 X l O '  1 .92XlO '  7 .92XlO '  3 .29%1O3 

2 2 . 4 3 ~  10 I 1.33x 10 7.18x 10 4.64x10 2.04x 10 
7 . 6 9 x 1 0 '  3 . 5 8 % 1 0 2  1.52XlO '  6 . 1 8 ~ 1 0 '  2 . 3 7 % 1 0 '  

1.5 1.7XX10 ' 9 . 8 0 x 1 0 '  5 . 2 7 X I O '  2 .76x10 '  1.48x10 
6 .11x10 '  2 .7?XlO '  l . I l x l 0 '  4.31X1O3 1 . 7 1 x 1 0 '  

1.2 l . 2 5 x 1 0 '  6 . 7 6 X l O '  3.59X1U2 1 . 9 2 ~ 1 0 "  l . O I X I O 1  

3 . 5 2 X l O '  1.54x10'  6 .09x10 '  2 . 4 1 X l O '  9 . 1 4 x 1 0 4  

4 3 . 5 7 ~ 1 0 '  i . 9 8 ~ 1 0 '  i . 0 8 x i o t  5 . 7 8 ~ 1 0 ~  3 . 0 7 ~ 1 0 '  

1.0 8 . 7 5 ~ 1 0 '  4 . 3 8 ~ 1 0 '  2 . 3 0 ~ 1 0 '  1 . 1 9 ~ 1 0 '  6 . 3 3 ~ 1 0 '  

0.8 3 . 8 9 ~ 1 0 '  1 . 7 8 ~ 1 0 '  9 . 9 2 ~ 1 0 '  5 .4Ox lO '  2 . 7 5 ~ 1 0  
2 . 7 3 ~ 1 0  1 . 0 8 ~ 1 0  4 . 2 5 ~ 1 0 '  m x i o  6 . 2 6 ~ 1 0  

8.83 x 10 3.22 x 10 ' 1.36x10 '  5 .43XIO '  1.98X1Od 

3 . 4 6 ~ 1 0  A 2 . 2 3 ~ 1 0 '  8 . 5 0 ~ 1 0  3 . 6 5 ~ 1 0  1 . 4 9 ~ 1 0  
0.5 1.06X1Os 4.09x10 * ?.54X1Od 1.23x 10 7.31 x 10 

7.65% 10 ' 3.84x 10 ' 3.26x 10 9.44% 10 ' 5.65x 10 ' 

0.6 5 . 0 8 ~ 1 0  3.1sx io i . s a X i o '  8 . 7 5 ~ 1 0  4 . 1 7 ~ 1 0  A 

Table 2, Same parameters as in tablc I for RI-WI. 

N 18 28 38 48 58 
< I . >  3.92 4.88 5.68 6.39 7.02 

PU 
4 7 . 0 5 x 1 0 '  6.96x10 6 . 9 4 n 1 0 '  6 . 9 1 X l O '  6.87x10 I 

1.53x10 ' 1.66x10 ' 1.73x10 ' 1 .78XIO '  1.82xlO ' 
3 6 . 1 9 ~ 1 0  ' 6 . 1 0 ~ 1 0 '  6 . 0 3 ~ 1 0  ' 5 . 9 8 ~ 1 0 '  5 . 9 4 ~ 1 0 "  

1.69x I O  ' 1.83x IU 1.91 x 10 L 9 7 r  I O  ' 2.01 X 10 I 

2 4.57x10 4 . 4 X x 1 0 '  4.42X10 4 . 3 9 X l O '  4 3 4 x 1 0  ' 
1 .65~10  ' l . 8 0 ~ 1 0 '  1 . 8 8 ~ 1 0  1 . 9 4 ~ 1 0 '  1 . 9 7 ~ 1 0  ' 

1.5 3 . 2 5 ~ 1 0  ' 3 . l O x 1 0 '  3 . 0 6 ~ 1 0  ' 3 . 0 3 ~ 1 0 '  3 . 0 2 ~ 1 0  ' 
1 . 3 2 ~ 1 0  1 . 4 4 ~ 1 0 '  1 . 5 2 ~ 1 0  1 . 5 7 ~ 1 0 '  1 . 6 1 ~ 1 0  ' 

I . ?  2 3 3 x 1 0 '  2 . 0 7 x 1 0 '  2.07XlO ' 1.93X10 1.94X10-' 
9 5 6 x 1 0  9 . 7 6 ~ 1 0  t 1 . 0 6 ~ 1 0  1 . 0 5 x I O '  1.10x10"' 

1.0 1.43x10 1.24x10 1 . 1 9 ~  10 1 . 0 9 ~  10 1 . 1 3 ~  10 ' 
5 , 1 5 x 1 0 2  5 . 4 7 ~ 1 0 ~  5 . 9 5 ~ 1 0 ~  5 . 8 1 ~ 1 0  6 . 1 9 ~ 1 0  

0.8 5 . 6 9 ~  10 ' 5 . 7 0 ~  10 4 . 6 0 ~  10 ' 4 . 9 9 ~  10 ' 4 . 6 0 ~  10 
1 . 2 0 ~ 1 0 ~  1 . 8 7 ~ 1 0 ~  1 . 8 6 ~ 1 0 ~  2 . 2 2 ~ 1 0 '  2 . 1 9 ~ 1 0  

0.6 8.51 x 10 6,lOx 10 ' X . 1 3 ~ 1 0 '  9 . I I x I O  5 . 6 6 ~ 1 0 '  
7 .99x10 '  6 .09x10 '  1 .60x10 '  2 , 0 l X l O 1  1.32xlO" 

0.5 1 . 7 9 ~ 1 0 '  6 . 8 5 x 1 0 '  1.09X10'  1.21X10' 9 .63x10 '  
9 . 2 3 ~  10 ' 2.01 x 10 ' 5 . 6 3 ~ 1 0 '  1 . 3 6 ~ 1 0  1 . 2 4 ~ 1 0  
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Ta l~ l c  3. PVIKTfor  self-avoiding walks (SAWS). random-flight walks ( n v w r ) .  indcpcrident 
stnil11 I~OICCUICP m,ith excluded volume (IMW), and iidependcnt small molecules wilhout 
crclridcd voluinc (IMNIV). as a funclion of the iiumber orsteps in the confined walk and 
the rcdriccd radius o f t h e  confining sphere. 

SAWS RFWr 

00 18 38 58 18 38 58 

4.0 1.07 1.10 1.10 1.10 1.13 1.11 
3.0 LO9 1.14 1.14 1.15 1.18 1.15 
2.0 1.15 1.27 1.17 1.27 1.34 1.30 
I .5 1.34 1.44 1.47 1.46 1.50 1.53 
1.2 1.65 1.72 1.72 1.84 1.79 1.84 
I .o 2.17 2.03 2.06 2.08 1.99 2.14 
0.8 2.78 2.54 2.65 2.57 2.56 2.81 
0.6 3.43 3.76 3.67 3.90 4.01 3.74 
0.5 4.76 5.15 5.05 3.79 4.93 4.71 

IMEV 

4.0 19.01 39.01 59.01 
3.0 19.01 39.01 59.01 
2.0 19.03 39.04 59.05 
I .5 19.08 39.08 59.10 
I .2 19.15 39.16 59.18 
I .O 19.25 39.29 59.29 
0.8 19.51 39.57 59.61 
0.6 20.35 40.36 60.45 
0.5 21.65 41.43 61.49 

IMNEV 

19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 
19.00 39.00 59.00 

Table 4. Paramcters of linear regression in the range 0 .6Bp042 .0  for the entropy change 
AS,, due to confinement. versus PO’ .  where p,, is the reduced radius orthe confining sphere, 
lor SAWS and RI:W$. o is the slope in  the linear regression and h the intercept with the 
- A S J K  aiis. The correlation coefficient (cc) i s  listed in  the final column. 

N (1 h CC 

RVWs 

18 1.58 0.40 1.000 
58 1.71 0.44 1.000 

I98 1.80 0.47 1.000 
398 1.85 0.J6 1.000 
598 1.84 0.48 1.000 

SAWS 

18 1.52 0.28 0.998 
58 1.53 0.38 1.000 

198 1.78 0.32 0.998 
198bis 1.80 0.32 0.996 

4. Discussion 

Figures I and 2 show that for equal po values, where po is the reduced radius of the 
confining sphere, the entropy variation ASl, as a function of p i z  is only slightly different 
for SAW$ as coinpared to RFWS. For sinall p i z  values (large confining spheres), 
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-ASdK 

2 
295 1 
0’5 t 

0 4  I Po.‘ 

0 0,25 0.5 0.75 1 1,25 

Figure 1. Entropy variation pcr latticesite upon confinement -AS,. divided by Bollzmann’s 
constant K, versus p(,’. where po= R / ( r )  is the reduced radius of tlic confining sphere. ( r )  
being tlic mean end-bend distance or the free (non-confined) walk. SAWJ: 0. 18 steps. 
A. 58 steps, 0, 198 steps: R P W S :  +. I8  steps. A .  58 steps, 0 ,  198 steps. The figure refers 
to small v ~ l u e s  of pa’ (large radii of the confining qphcre). 

l4 T 
10 l2 t 

e 
b 
. 

0 1 

0 1 2 3 4 5 6 7 

Figure 2. Pnrnmeters and notation a s  in figure I, but for large vducs of pu’ (small radii 
of the confining sphere). 

-ASpSAW < -A&Kw : the inverse phenomenon is observed for large p i z  values (small 
confining spheres). and the latter phenomenon is easily interpreted as being due to the 
excluded volume of SAWS. However, i t  should constantly be kept in mind that the 
reduction lengths ( 1 . )  are diflerent for R F W ~  and SAWS, as a function of N :  these lengths 
are 0.922 No.’ and respectively. Thus, for N=58 steps, one has for the radii of 
the confining spheres at po= I ,  7.02 and 11.06, respectively [ I ] .  The relative difference 
in radii increases with N. 
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-ASIK 

15 

10 

b 

-- . . 
6 

-. b 

. . . 0 - PO 

0 1 2 3 4 

F i y r c  3. Total entropy variation upon confinement of a walk -AS (not to be confused 
with tlie entropy variation per lattice site), divided by Boltzmann's constant ti, versus pa< 
whcrep,,is the reduced radiusaftl~econfiningrpl~cre.Tl~e reduced radiuspo=4 isarbitrarily 
taken as tile origin. SAWS: 0, 18 steps. 0. 38 steps. A. 58 steps; RFWI: +. 18 steps, 0 ,  
38 steps, A ,  58 steps. 

WIKl 

12 '1 
B B B 

0 1 2 3 4 
PO 

Figurc 1. PL,,'KT, where Pis the pressurc exerciscd hy the confined cliain on the spiwical 
boundary. Vtlie volume of thc canfining sphere. K Bolt7,mann'sconstaot and T t h e  absolute 
temperature, versus po. where po is the reduced radius of the confining sphere. Scaling is 
obeyed, that is P V ~ t i T d o c r  not depend on the numbcr N of steps of the chain, but only 
on the reduced radius poor theconfining sphcm. 0,sclf-avoiding walks (SAWS): D, random- 
flight walks ( R F W ~ ) ;  A. independent small molcculcs wit11 excluded volume (IMPV).  For 
independent small molecules without excluded volume. P V / t i T  is equal lo one. 

The downwards curvalure of  the plot in figure I as pOz becomes small, is due to 
the fact that then higher contributions lo the Casassa equation (see below), which have 
been neglected in our analysis. become important. The same downwards curvalure is 
also displayed by SAWS. The linear region in the plots in figure 2 as p i 2  is increased is 
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significantly more extended for RFWS. The dispersion and inversion of points for 
p i 2 > 4  is an artefac1 due to h e  sinallness of the confining spheres, where, due lo the 
small noinbcr of lattice sites inside the boundary. the enlropy leaps by relatively large 
and unpredictable amounts as the radius of the confining sphere is varied. The plieno- 
nienon of course exists also for large confining spheres, but then the leaps are compara- 
tively small and overshadowed by the large number of bounded lattice sites. and a 
continuous variation of the entropy is then observed. 

Casassa [2] gave a relationship for the partition Q of Gaussian chains inside pores 
of spherical shape and the bulk solution, which when po is less than 2, is approximated 
by 

QsDhCrc = ( s i n 2 )  exp{ - r 2 [ ( r Z > / ( r . > 2 1 / 6 p ~ }  . (21) 

KIn Q=AS, (22) 

Now 

the entropy change when the chain is in bulk solution (free chain), and when it is 
constrained to lie inside a spherical pore, the chain being started in both cases at specific 
lattice sites. 

From equations (21) and (22) it follows that, for RFWE 

(AS/lORFW= {ln(6/lr2) - (lr2/6)[(r.2)/<1)21p;2} (23) 
that is 

(ASjK)nFlv=-0.498- 1.938~8~ (24) 

where, i n  (24). the ratio ( ~ ~ ) / ( r ) ~  for RFWS has been replaced by its limiting value, 
1.178, as N tends to infinity [ I ] .  Now from table 4 it is seen that the limiting MC slope 
of ( - A S , / K ) R ~ ~  versus po2 appears to be only I .85*0.02. Explanation of this differ- 
ence i n  slope (1.85 instead of 1.94) may be as follows: due to the discrete nature of the 
cubic lattice on which our walks are embedded, the Casassa equation does not strictly 
apply to our  MC simulalions. The Casassa equation has been derived by analogy with 
the theory of heat. The diffusion equation has been used for the purpose, assuming 
that the spherical boundary is held to zero temperature. Now when one uses differential 
equations, one necessarily introduces continuity, whereas our lattice contains discrete 
lattice sites. In our case, there is a superficial spherical shell of width less than, but of 
the order of magnitude of the step length, where in the mean the walks are forbidden 
and therefore cannot reach the boundary. I n  other words, tlie 'effective' reduced radius 
of the confining sphere is not exactly po, but somewhat less. Of course, the effect of 
this outer shell would become negligible if very large chains (say N= IO')), could have 
been contemplated in MC simulations, but this is not the case. 

In the range of PO (0.6<p0<2) from which the data in ?able 4 have been derived, 
the width of the forbidden superficial shell may tentatively be estimated through the 
relationship 

1.85pb2= 1.94~;~.  (25) 
Here p;-' is the effective radius, which will correct for the discrepancies in tlie slope. 
For N=598, our largest RFW. (r)=22.54, so that the radius of the confining sphere 
for PO= I is 22.54. and the width of the forbidden superficial shell would then be 

(26) AR= (r)Apo = 22.54 x 0.0235 = 0.53 



S/a/i.s/ir:y of coitfined self-avoidiiig watks: I1 1129 

that is about half the step length. This is a quite plausible value. The above argument 
is tentative, not rigorous. and does no{ apply to large po values (for wIhich, however, 
the simplified Casassa equation (21)  does not apply. and in which large pa values have 
not been used to establish the data in table 4). If we admit the argument, which i n  any 
case cannot be discarded. then, notwithstanding the nearly 5% difference between the 
theoretical and MC slopes, one can assume that the agreement of our MC data with the 
Casassa theoretical prediction is good. Finally. as deduced from table 4, there is satisfac- 
tory agreement regarding the constant term, which yields the prefactor 6/n2 in equation 
(21). 

On the other hand, the results for SAWS show (see figures I and 2 and table 4) that 
there is a range of p o ,  somewhat more restricted than for RFWS, where AS scales as 
pi’. with a slope which differs but little from that of RFWS. 

One might have wished to be able to compare these results with those of scaling 
theories for confined SAWS. Unfortunately, all papers of which we are aware are con- 
cerned with SAWS confined inside slits o r  tubes. That means that whatever the dimensions 
of the confining slits or tubes, a t  least one dimension remains infinite. which is not the 
case if the confining geometry is a sphere. From this i t  follows that direct transposition 
t o  a spherical boundary of the scaling arguments given, e.g. by Daoud and de Gennes 
[IO],  does not appear to be feasible. The one thing we can say with certainty, is that 
in a A S  versus pi’ diagram, both SAWS and RFWS display nearly the same slope. A 
In[-AS] versus In pa plot, not reproduced here, shows that  SAW^ scale with respect to 
PO, with a power which is equal or perhaps somewhat larger than that of RFWS. 

Regarding now PV/KT, the number equivalent 171 of independent small molecules 
which will produce the same pressure as one SAW or RFW chain is given in table 5. The 
PV/KT data have been obtained by expanding AS/Kas a series in p t 5 - ‘  ( i u p  to seven) 
and deriving the series with respect to pa to obtain the pressure through equation (15). 
Though this expansion does not contain the leading term p;’, it was empirically found 
to yield the best fit, surely through compensation effects. I t  is seen from table 3 that 
scaling is obeyed. and that P V/KT is about the same for SAWS and RFWS for equal 
values of PO. 711 is about 2 for PO equal to 1, and about 5 for po equal to 0.5. It is 
expected that as pa decreases below this value. (PV/KT)sAw would increase much more 
steeply than (PV/KT)RFW, because of the excluded volume of  SAW^. A M C  analysis of 
this expectation is however difficult, because for small radii the small number of bounded 
lattice sites yields data which vary erratically and cannot be used. 

The results in table 3 will now be compared with the Edwards-Freed (EF) theory 
for the pressure exercised by a random flight chain on l l i e  walls of a cubic box [3]. If 
the step length is ascribed the value I .  as is the case in the present work, the EF theory 
leads to an equation which may be written in  present notation as 

( P V / K T ) R F W = ( n 2 / 3 ) [ N / V 2 1 1 ]  = ( K ~ / ~ ) [ ( ~ ~ > / v ~ ’ ~ I  (27) 

where V is the volume of the cubic box. I f  we assume that the above relationship 
remains valid for a spherical boundary and replace V by ( 4 / 3 ) n R 3 ,  making also the 
conversion to the reduced variable PO= R / ( Y )  used here. one obtains 

(28) (PV/KT)RFW= 1.226[(~’)/(~>’] p i 2 =  I .49p02 

where ( r . 2 ) / ( r . ) 2  has been replaced by its limiting value 1 . I  78. From table 3, considering 
the mean values of (PV/KT)RnV for 18, 38 and 58 steps, in the range 0.6<p064.0, 
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Tahle 5. Numbcr equivalcnl m of small iadcpcndcnt molecub, which will produce tlie 
s~me prcrsurc as a ringlc R F W  chain. as a Funclion o f p , ’ ,  akere puis the reduced radius 
or the confining sphcrc 

D,, 4.0 3.0 2.0 1.5 I .2 I .o 0.8 0.6 
pol 0.0625 0.1111 0.25 0.4444 0.6944 I .o 1.5625 2.7777 
I,, 1 . 1 1  1.16 1.30 1.50 1.82 2.07 2.65 3.88 

one finds the number equivalent in  of small molecules given in table 5.  The data i n  this 
table yield a straight line of slope nearly 1 and correlation coefficient I.000. Thus, it 
appears that in accord with tlie EF theory, i i i  varies linearly with p;’, but the M C  slope 
is only 1, instead of 1.5. We do not know if this discrepancy originates in the different 
geometric form of the bounding surface, or in some other reason. 

Finally, regarding gel permeation.chroniatography, the findings in the present paper 
do not lead to a unique conclusion. In a theta solvent, polymer chains recover the 
dimensions of RFW chains of the same number of steps, and can most aptly be described 
as pseudo-RFWs. There is then no reason not to assume that the Casassa theory is an 
adequate description of actual phenomena. In an athermal solvent, on the other hand, 
the behaviour of polymer chains will approximately approach that of the SAWS here 
consideredt. In  this case, the reduced diameter of the pores is not that applying to 
RFWS, and the Casassa theory will overestimate the ease with which polymer chains 
enter pores. and thus tlie partition coefficient Q. However, the theory can in this case 
be corrected, to a fair or good degree of approximation. by a simple renormalization 
of the pore diameters. The error involved when so doing may be estimated, according 
to the parameter involved, from the tables and figures of this paper and those of [ I ] .  
Intermediate situations between good and theta solvents may be treated accordingly. 

5. Conclusions 

Provided khat proper reduction lengths are used for N-step confined SAWS and RFWE 

and 0.922N”.’, respectively), then for equal values of the reduced radii of the 
confining spheres, both these walks exhibit very comparable behaviours for all the 
quantities investigated in the present and i n  the previous paper [ I ] .  These quantities 
include chain dimensions, concentration profiles, entropy change upon confinement, 
and pressure exercised by the confined walk (=chain) on the confining boundary. On 
the other hand, if identical values for the dimensions of the confining geometries are 
considered (which means that the reduced dimensions are now different), then the 
behaviours of confined SAWS and R F W ~  are no longer comparable. 

Thus, i t  appears that one can derive, to a fair and perhaps sometimes good degree 
of approximalion, the properties of confined SAWS inside spheres, from the analytically 
more tractable theory of confined R F W ~ ,  through a simple renorinalizalion of lengths. 
This simple result will not in general apply to other confining geometries, in particular 
when at least one dimension remains infinite. 

7 Only approximately approach, because the energy or interaction between polymer segments lying far apart 
along lhe chain is in Tact a free energy, and therelore, even in an alhermal solvent. there will be a nowzero 
free energy of inlcraclion. 
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