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Abstract. Self-avoiding walks {sAws} up to 198 sieps and random-flight walks (rEws) up
to 398 steps were computer generated. The entropy change upon confinement of the walks,
as well as the pressure exercised by corresponding chains obeying Hamiltonian mechanics
on the surface of the confining spheres, was derived {from the Monte Carlo data for the
‘compactness’ parameter W of the walks. If appropriate reduced radii po=R/{r) are intro-
duced, where {1} is the mean end-to-end distance. it is found, in accord with theory, that
a plot of the entropy change AS versus p,® for REws is linear. The same is also found to
be true for saws, though in a somewhat more limited p, range. The quantity PV/KT, where
P is the pressure, ¥ the velume of the confining boundary. T the absolute temperature,
and K is Boltzmann's constant, is also found to vary lincarly with py?*, for both kinds of
walks, in accord with the Edwards-Freed theory, The general conclusion to be drawn from
the present paper and also a previous one, is that if proper reduction lengths are introduced
for saws and mrws (respectively, N°™% and 0,922 N°%), then the general properties of
confined saws and rREws are quite comparable. These properties include chain dimensions,
concentration profiles, entropy change upon confinement, and finally pressure.

1. Introduction

In a previous article [1], using Monte Carlo (mc) simulations, the dimensions and
concentration profiles of random-flight walks (rFws) and self-avoiding walks (sAws)
confined inside spheres of varying diameter were reported. In the present article, the
entropy and related quantities of such walks are presented.

The problem of the entropy of RFws confined in various geometries, including
spheres, was addressed analytically by Casassa [2]. Sometime later, Edwards and Freed
[3], and Collins and Wragg [4], addressed the equivalent problem of rRFWs confined
inside a cube. Cifra et af [5] made mc simulations of saws confined inside a cube, and
determined the partition function and thus the entropy of such walks. Analytical, exact
enumeration, and Monte Carlo studies of confined chains, whether RFw or saw, are
numerous {2-22], however, it seems that the specific problem of the spherical boundary
has been for some reason neglected. The motivation or background of many of these
studies is in fact the adsorption of polymers on a surface, and therefore the constraing
considered in such cases is one or two parallel plane surfaces. On the other hand, the
entropy problem inside spheres, is important in gel permeation chromatography, for
chain polymerization inside small droplets, and more generally for the thermodynamics
of polymer chains inside droplets, as this happens in microemulsions [23]. The present
mc study of chains confined in spheres should, however, be primarily viewed as a study
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in its own right of walks confined inside a passive (zero-infinite potential) boundary
of spherical shape.

The computational sofiware and methods used in this article are the same as in the
previous article [1] and will not be repeated here. In particular, the reader is referred
to [1] for the basic features of absorbing (As) and reflecting (rs) statistics. For conveni-
ence, we remind here that the attrition A(N, R) is the probability of failure of an
initiated walk. In as and for saws, the attrition A.s(N, R) of an N-step walk inside a
sphere of radius R originates in that a given lattice site cannot be visited twice by the
walk being generated, and by the fact that the walk cannot cross the surface of the
sphere. In reflecting statistics (rRs), the attrition Ars(N, R) originates in the fact that
the saw being generated may become trapped inside a nest. Ags is usually a negligible
quantity, unless the dimensions of the bounding surface become comparable to or
smaller than the mean dimensions of the free {unbounded) ¥-step walk. In any case,
Ags is always considerably smaller than 4.5, and therefore, in order to save computa-
tional time, rs will generally have to be used.

We also remind the reader of the definition of the ‘compactness’ parameter W,
oceurring in rs [1, 24, 25]:

5 6 nt
W=(Sz,,m)"{ 5 u)} : (1a)

Jeti=1
Here ] represents in how many cases there were, for chain j in the sample, / possibilities
to continue the generation process of the walk; S is the sample size, and Z,,,, is defined
through:

Zoax=6% 5" 7" (sAws) (1%)
Lmax = o (RFWs). (1c)

2. Theoretical relationships

In order to analyse and correlate the Monte Carlo data, a number of theoretical refation-
ships are needed. First, a Monte Carlo estimate of the number Z(¥, R) of distinct
configuralions of the N-step confined walik inside the sphere R is required.

In As, the solution to this problem is obvious, since. if 4.5(N, R) is the attrition,
one clearly has for the mean number of configurations per bounded laitice site:

Zp(Na R)='-‘ Zmax(N)II - AAS(Ns R)] (2.)

where Zuwax(N) is the number of configurations of the free random-flight walk of N
steps, given in (1¢). The total number Z(N, R) of distinct N-step configurations inside
the sphere of radius R containing k lattice sites is then:

Z(N, RY=Zuux{N)[1 — Aas(N, R}k (3)

In rs, Z(N, R) may be estimated through the expectation E(}¥) of the WAN, R)
parameter as follows: let us assume that using RS we start generating N-step walks
starting from lattice sites chosen at random inside the sphere R. Let us further assume
that in a total sample of S trials, S, have succeeded and §— 8§, have failed (=the walk
get trapped inside a nest before being completed). If w” is the weighing factor of walk
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J in the sample. then the mMc expectation of W is

Sa 5

Eu(W)=§ 1{2 w't ¥ n"’}. (4)
el j=Sat1

Now, the failing walks are not counted in M statistics, and therefore the second sum

in the rRuS of equation {4) is zero. Thus

S, 5,
Enc(W)=5"' (%)( ) w’)= (S./S)S3" ( ) w")= [t = Ars(N, R)] We (5)
Qa =1 J=1
where Wic is the mc-obtained mean value of the w's. On the other hand the theoretical
expeclation of B’ is
Z(N.R)
En(BY= % pw! (6)
=1

where p, is the probability of constructing the specific walk j, where 7 covers all the
range of accessible configurations. Now p,=p.p(j/s), that is p, is equal to the product
of the probability p, of starling a walk at the Jattice site s, by the conditional probability
pUj/s) of obtaining configuration j, if it is known that the starting site s has actually
been chosen. Since all starting sites have to be taken with equal probabilities, the first
probability is equat to k™', where k is the number of lattice sites bounded by the sphere.
The second probability is

pli/sy=I1w™ (N

where n} is the number of occurrences where there have been i possible directions to
continue generating the walk. From equations (1) and (7) it is seen that

PUIY= (! Za )™ (8)
Combining equations (6) and (8) one finds
En(WY=Z/kZ nax- (%

Now the theoretical and mc values of the expectation E(#') should be approximately
equal quantities. (The deviation due to statistical fluctuations of Enc(W) may be
reduced by increasing the MC sample §). One then has, from equations (5) and (9) the
following estimate for Z(N, R):

Z(N7 R) =Zm:tx(N){l _ARs(N, R)] ”V(“Va R)k (10)

This is the basic relationship we shall use in the following; it constitutes an elaboration
of the general relationships given in [24] and [25]. The mean number of configurations
per lattice site is equal to

Zp(N-» R)=Znu(N)[1 = Ars(N, RY]W(N, R). (1)

From equation (10) the entropy of an N-step chain (2 chain being a walk whose
steps are interconnected) inside the sphere R, provided it obeys Hamiltonian mechanics,
is given by

S(N, R)/K=In Z(N, R) (12a)

where K is Boltzmann’s constant.
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Similarly, the mean entropy per lattice site instde the boundary is given by
Sy(N, R)/K=1n Zy(N, R). (125)

The above relationships (10) to (12) are general. They are valid for saws and for
rRFws as well, provided that the proper values for the attrition 4 and the compactness
parameter B are used. They are also valid whether the walk is free or confined, and
for any configurations of bounding surface.

We can now consider the number of configurations of the free (unbounded) walk
per lattice site;

Zp(N- co)=Zmax[l_ARS(N; ao)]li’(N, UJ) (]3)

For an unbounded rew the attrition is zero and the compactiness parameter equal to
one, so that in this case Z,(N, 00)=Z.x, as expected. This is no longer true for an
unbounded saw, though in this case for most lattices the attrition Ars is quite small
and thus negligible.

From (11) and (13) one has for the entropy change per lattice site upon confinement
of a free walk:

AS/K=[S,{N. R) = SN, o0)]/K=In[Z,(N, R)/Z(N, 0)]
=In{[1 = A(N, RYW(N, R)/[1 = A(N, )] W(N, )} (14a)

where for simplicity in the attrition the subscript rs has been dropped. If, as generally
happens when the radius of the sphere is large with respect to the chain dimensions,
both A(N, ) and A(N, R) are small, one can simply write:

AS/K=1In[W(N, R)]/(W(N, o)]. (14b)

Relations (14) refer Lo the mean entropy change per Jaitice site, since the actual entropy
of chains originating in specific bounded lattice sites depends on the specific site
considered.

It follows from classical statistical mechanics that

P=—(AF/3V)r=T(3S/@V)r=KT{(2/3V) IN[Z(N, R)}
=[KT/47 R*J(3/8R) In[Z(N, R)]. (15)

Here P is the pressure exercised by the chain upon the spherical boundary, Fis the free
energy, V the volume, T the absclute temperature, and Z{N, R) is given by equation
(10).

Beyond the comparisen of the properties of N-step confined chains with or without
excluded volume, it may be of some interest to compare the properties of an N-step
chain with a gas of N independent molecules, with or without excluded volume (the
latter case corresponding to the perfect gas). Since we used a discrete lattice to generate
our N-step chains, the comparison should proceed using the corresponding relationships
for a gas, the molecules of which are constrained to occupy discrete lattice sites. With
this assumplion, if therc are & lattice sites within the sphere of radius R, the entropy
of N independent molecules experiencing exciuded volume is given by

SjK=Mn[k!/(k= NN =—{(k~ N) In[(k— N)/E]+NIn[N/k]}  (16)

where, to obtain equation (16), indiscernibility of the molecules has been assumed, and
Stirling’s approximation for the factorials used. The pressure follows by introducing
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(16) into (15):

P=~KTIn[l - N/k]. (17)
In the absence of excluded volume, the entropy is given by

S/K=In]k" /N1 (18)
and correspondingly the pressure is

P=KTN/k. (1%}

If the number of lallice sites is nearly proportional 1o the volume ¥ of the sphere, the
perfect gas law PV = NKT follows from equation (19). However, for the relatively small
sphere volumes occurring in our calculations, the proportionality is only approximate,
and therefore it is preferable Lo calculate the entropy and pressure of N confined
independent gas molecules nsing equations (16) 1o {19).

3. Monte Carlo results

From equations (3) and (10) one obtains:
W=(1—-Aas)/{1 = Ars) (20)

a relationship relating the compactness parameter o the attritions in absorbing and
reflecting statistics. This relationship has been checked for various values of pg, where
Py 1s the reduced radins of the confining sphere, that is the radius R over the mean
end-to-end distance {r> of the free chain.

In tables 1 and 2 the W parameter is tabulated as a function of py, for saws and
rRFws, respectively, and for step lengths ranging from 18 to 58 steps. These tables also
display the corresponding square standard deviations o= () — (W),

From tables 1 and 2 for W, the analogous tables for the entropy change AS/K upon
confinement of the chain, and the pressure P exercised by the chain on the bounding
surface, as a function of py (rather, pg-, see below) are easily established. To this end,
equations (10), (124 ) and (15) have to be used. As a consequence of this, the informa-
tion provided by the latter tables is already contained in tables 1 and 2, and therefore
such tables would be somewhat redundant. For this reason, only the corresponding
diagrams will be given, with the exception of PV/KT, which for convenience is tabulated
in table 3. In table 4, the parameters of the linear regressions in the linear part of the
plots of AS,=f(ps*) are tabulated (see the discussion).

In figures 1 and 2, the entropy variation per lattice site upon confinement of a saw
of a RFW is given, as a function of p5%. p;? has been chosen as variable in these figures
instead of py. because it is known from theory [2], that for RFws, when the radius of
the confining sphere approaches the dimensions of the free chain, the entropy change
AS is linear in this variable. Figure | is concerned with small pg? values (large R radii),
while figure 2 is concerned with large ps’ values (small R radii). Figure 3 displays the
overal! entropy variation, the quantity relevant for calculation of the pressure through
equation {15). Finally, figure 4 shows the pressure felt by the sphere boundary when
an N-step sAw or rrw chain, obeying Hamiltonian mechanics, is confined inside
the sphere. For comparison, the pressures corresponding to N independent (gas-like)
molecules, with or without excluded volume, is also given,
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Table I. Compaciness parameter F' for SAws, as a function of the number of steps in the
confined walk and the reduced radius of ihe confining sphere. Below the W values, the
square standard deviations o arce also listed ATl sample sizes in this table and everywhere
else: £0° chains,

N 18 28 38 48 58
e 552 7.18 2.63 9.89 11.06
Po
=% 4.88%10 " 274 %10 1.49% 10 ' 7.98%10 2 4331%10?
6.69%10 ? 4.68%10° 245% 10 * 1.i0x 10 ? 4.76%10 °
4 35710 ° 198 %10 ' 1.08x10 578%10 2 3.07%10 2
8.80%10 * 4.57% 10 * 2.00%10 *° $.80x10? 35010 °
3 318x10 "’ 1.74% 10 ' 9.42x10 * 507x10? 27410 *
8.70x102 431 %102 1.92%10 * 7.92%x10 * 32910 *
2 243%x 10! 1.33%10 ' 7A8% 10 ¢ 4.64x%10 2 2.04% 10 ¢
7.69%x10 ? 3.58%10? 1.52% 10 * 6.18%10 * 237x10 °
1.5 1.78%10 ' 9.80x 10 * 527x10 2 2.76x 10 * 1.48x10 ?
611x10° 272% 10 * IRTESN 431x10° 1.71% 10 *
1.2 1.25%10 ! 676x 10 ° 3.59% 10 2 192x 10 ° 1.01%10 *
3.52% 10 ° 1.54%10 2 6.00% 10} 241 %10 Sl4x10 ¢
1.0 875%x10 2 438x10 ? 230x10 2 1,19%10 ? 633%10 *
273x10 1.08x10°? 425%10 * 1.58x10 * 62610 °
0.8 3.89%10 ? 1.78 %102 9.92%x10 * 540%x10 ¢ 2.75% 10 ¢
£.83x10 7 32%x10 L36x10 ° 543%10 * 1.98x1¢ °
0.6 5.08x10 F 315%10° 158 =10 ° 875% 10 417x10 *
346%70 ¢ 223%10 % 8.50%10 ° 3.65% 10 ° 149x%10 *
0.5 1.06x10 ° 409%10 * 2.54%10 ° 1.23% 10 * 731%10 °
7.65%10 * 384x10 ¢ 3.26x%10 ° 944x10 7 565%10 7
Table 2. Same parameters as in table 1 for rRI-ws.
N 18 28 33 48 58
) 3.92 4,88 5.68 6.39 7.02
Lo
4 7.05%10 ! 6.96%10 ' 694x%10 "' 691x10"' 6.87x10°}
1.53x10 ' 1.66 %10 ! 1.73%10 ' 1.78%10 ' £82%10 *
3 6.19%10 ' 610%10 " 6.03x10 " 598%10 ' 594% 10"
1.69% 10’ 1.83I% 10 °f 1.91x10 " 1.97=10 "' 201%x10 !
2 457%10 ' 448%10" 44210 " 439%10 ' 434%10 '
1.65%10 "' 1.80x10 " .88 %10 " 194% 10 ' 1.97%10 '
1.5 325%10 ! 3ox10 " 3.06%10 ' 3.03%10 " 3.02x10 "'
1.32x10 ' 1.44%10"' 1.52%10 ! 1.57x10 " 1.6l x10 '
1.2 233x 10! 207x10" 2.07%10 ' 193x10 ' 1.94 % 10!
9.56x10 ° 9,76 = 10 * 1.06=10 ' 1.05%10 ' IRUER T
1.0 143x10 "' 1.24%10 ' 1.19x 10 ' 1.09%10 ' 1.13% 10 !
505%10 2 547%10 ? 595%x10 ? 58110 ° 6.19% 10 *
0.8 5.69%10 7 570% 10 * 460x10 ? 499x% [0 ? 4.60%10 *
1.20% 10 *® 1.87x10 3 1.86%10 ° 222% 00 ° 219x%10 *
0.6 8.51x10° 6,10x10° g13x10 ° 9.10%19 * 566x10 *
799x10 * 6.09 % {0 * 160x 10 ° 20010 * 1.32x19°
0.5 1.79%10 * 68510 * Lo9x10 * 20«10t 963x10 *
9.23x10 ° 20ix10° 5.63%10 ° 1.36%10 4 L24%10 ¢
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Table 3. PV/KT for sell-avoiding walks (saws), random-flight walks (rrws), independent
small molccuies with excluded volume (imkv], and independent small mofecules without
excluded volume (1MNEV), as a function of the number of steps in the confined walk and
the reduced radius of the confining sphere.

SAWSs RFWs
fo 8 33 58 18 33 58
4.0 [.07 1.10 I.10 1.10 1.13 .11
30 LO9 114 1.14 115 118 115
20 115 1.27 1.17 1.27 1.34 1,30
1.5 1.34 1.44 1.47 1.46 1.50 1.53
1.2 1.65 1.72 1,72 1.84 1.79 1.84
1.0 2107 2.03 2.06 2.08 1.99 2.14
0.3 278 2.54 2.65 2,57 2.56 .81
0.6 343 3.76 3.67 390 4.01 374
0.5 4.76 5.15 5.05 379 4.93 4.7
IMEY IMNEY

4.0 19.01 39.01 52.01 19.00 39.00 59.00
3.0 19.01 Jo.or 59.01 19.00 39.00 59.00
2.0 19.03 39.04 59.05 19.00 39.00 59.00
1.5 19.08 39.08 59.10 19.00 39.00 59.00
1.2 19.15 3916 59.18 19.00 3%.00 59.00
1.0 19.25 39.29 59.29 19.00 39.00 59.00
0.8 19.51 39.57 59.61 19.00 39.00 59.00
0.6 20,35 40.36 60.45 19.00 39.00 59.00
0.5 21.65 41.43 61.49 19.00 39.00 59.00

Table 4. Paramcters of linear regression in the range 0.6 € po <2.0 for the entropy change
AS, due to confinement, versus po°, where py is the reduced radius of the confining sphere,
for saws and rRews. a is the slope in Lhe linear regression and b the intercept with the
—AS,/K axis. The correlation coefficient (ce} is listed in the final column,

N a b cc
RI“Ws

18 .58 0.40 1.000

38 1.71 0.44 1.000
193 1.80 0.47 1.000
398 1.85 046 1.000
598 [.84 0.48 1.000
SAWs

18 1.52 0.28 0.998

58 1.53 0.38 1.000
198 1.78 .32 0.99%
198bis 1.80 0.32 0.99

4. Discussion

Figures 1 and 2 show that for equal p, values, where p, is the reduced radiuvs of the
confining sphere, the entropy variation AS,, as a function of pg* is only slightly different
for saws as compared to RFws For small pg* values (large confining spheres),
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-AS K
25 1
[ ]
E Y
[+]
271 %
: -3
1,5 1 2
o
:
1 :
051 8
3
0 + } " " — o
0 0,25 G5 0,75 1 1,25

Figure 1. Entropy variation per lattice site upon confinement —AS,,, divided by Boltzmann's
constant K, versus p,”. where pa= R/<rY is the reduced radius of the confining sphere, ()
being the mean end-to-end distance of the free (non-confined) walk, saws: &, 18 steps,
&, 58 steps, O, 198 steps; REws: 4,18 steps, A, 58 steps, @, 198 steps. The figure refers
1o small values of po? (large radii of the confining sphere).

-AS/K
14 -

12 +

- 1 Je]

10 1

o e 0

Figure 2. Parameters and notation as in figure 1. but for large values of p,7 (small radii
of the confining sphere).

—ASsaw < —ASprrw ; the inverse phenomenon is observed for large py? values (small
confining spheres), and the latier phenomenon is easily interpreted as being due to the
excluded volume of saws. However, it should constantly be kept in mind that the
reduction lengths {r> are different for RFws and saws, as a function of N: these lengths
are 0,922 N*% and N respectively. Thus, for N =58 steps, one has for the radii of
the confining spheres at py=1, 7.02 and 11.06, respectively [1]. The relative difference
in radii increases with N.
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-ASTK
20+ e
4
L}
15 + .
s
10 + 4
3
5 <+ . .
[ ]
[ ]
[ ]
¢ ; ¢ } + fo
D 1 2 3 4

Figure 3. Total entropy variation upon confinement of a walk —AS (not fo be confused
with the enlropy variation per lattice site), divided by Boltzmann's constant K, versus py,
where py is the reduced radius of the confining sphere. The reduced radius py =4 is arbitrarily
taken as the arigin. saws: {, 18 steps, O, 38 steps. A, 58 steps; RFws: ¢, 18 steps, @,
38 steps, A, 58 steps.

PVIKT
15 1

12

=

o
4458 A & & & 2 @
t

M

oA

0 k] 2 3

Figure 4. PV/KT, where P is the pressurce cxercised by the confined chain on the spherical
boundary, ¥ the volume of the confining sphere, K Boltzmann's constant and 7 the absolute
temperature, versus py. where pp is the reduced radius of the confining sphere, Scaling is
obeyed, that is P¥/ KT does not depend on the number N of steps of the chain, but only
on the reduced radius g, of the canfining sphere. ¢, self-avoiding walks (saws}; [0, random-
flight walks (rR¥ws); A, independent small molecules with excluded volume (1MFv). For
independent small molecules without excluded volume, PI/KT is equal to one,

The downwards curvalure of the plot in figure 1 as p;? becomes small, is due to
the fact that then higher contributions to the Casassa equation (see below), which have
been neglected in our analysis, become important. The same downwards curvalure is
also displayed by saws. The linear region in the plots in figure 2 as p;” is increased is
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significantly more exlended for rrws. The dispersion and inversion of points for
pa?>4 is an artefact due to the smallness of the confining spheres, where, due Lo the
small number of lattice siles inside the boundary, the entropy leaps by relatively large
and unpredictable amounts as the radius of the confining sphere is varied. The pheno-
menon of course exists also for large confining spheres, but then the leaps are compara-
1ively smalf and overshadowed by the large number of bounded latiice sites, and a
continuous variation of the entropy is then observed.

Casassa [2] gave a relationship for the partition @ of Gaussian chains inside pores
of spherical shape and the bulk solution, which when py is less than 2, is approximated
by

Osphere = (6/7%) exp{—7*{<r?> /<r)"1/6p3} . (21)
Now
Kin Q=AS, (22)

the entropy change when the chain is in bulk solution (free chain), and when it is
constrained to He inside a spherical pore, the chain being started in both cases at specific
lattice sites.

From equations (21) and (22) it follows that, for rRFws

(AS/K)rrw={In(6/1%) = (z*/6)[+*> /<r)¥]p5”} (23)
that is
(AS/K Yerw=—0.498 —1.938p5> (24)

where, in (24), the ratio {r*>/{r)>* for rFws has been replaced by its fimiting value,
1.178, as A tends to infinity [1]. Now from table 4 it is seen that the limiting McC slope
of (~AS,/K rrw versus p52 appears to be only 1.85%0.02. Explanation of this differ-
ence in slope (1.85 instead of 1.94) may be as follows: due to the discrete nature of the
cubic latlice on which our walks are embedded, the Casassa equation does not strictly
apply to our mc simulations. The Casassa equation has been derived by analogy with
the theory of heat. The diffusion equation has been used for the purpose, assuming
that the spherical boundary is held to zero temperature. Now when one uses differential
equations, one necessarily introduces continuity, whereas our lattice contains discrete
lattice sites. In our case, there is a superficial spherical shell of width less than, but of
the order of magnitude of the step length, where in the mean the walks are forbidden
and therefore cannot reach the boundary. In other words, the ‘effective’ reduced radius
of the confining sphere is not exactly po, but somewhat less. Of course, the effect of
this outer shell would become negligible if very large chains (say N =10%), could have
been contemplated in mc simulations, but this is not the case.

In the range of po (0.6 < pe<2) from which the data in table 4 have been devived,
the width of the forbidden superficial shell may tentatively be estimated through the
relationship

1.85052=1.94p;> (25)

Here pi™* is the effective radius, which will correct for the discrepancies in the slope.
For N=1598, our largest rFw, {r>=22.54, so that the radius of the confining sphere
for po=1 is 22.54, and the width of the forbidden superficial shell would then be

AR={rdApy=22.54x0.0235=0.53 (26)
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that is about half the step length. This is a quite plausible value. The above argument
is tentalive, not rigorous. and doees not apply to large pg values (for which, however,
ihe simplified Casassa equation (21) does not appiy, and in which large po values have
not been used to establish the data in table 4). If we admit the argument, which in any
case cannot be discarded, then, notwithstanding the nearly 5% difference between the
theoretical and mc slopes, one can assume that the agreement of our mc data with the
Casassa theoretical prediction is good. Finally. as deduced from table 4, there is satisfac-
tory agreement regarding the constant term, which vields the prefactor 6/z7 in equation
(21).

On the other hand, the resulls for saws show (see figures | and 2 and table 4) that
there is a range of py, somewhat more restricted than for rFws, where AS scales as
P52, with a slope which differs but little from that of RFws.

One might have wished to be able 1o compare these results with those of scaling
theories for confined saws, Unfortunately, all papers of which we are aware are con-
cerned with saws confined inside slits or tubes. That means that whatever the dimensions
of the confining shits or tubes, at least one dimension remains infinile, which is not the
case if the confining geometry is a sphere. From this it follows that direct transposition
to a spherical boundary of the scaling arguments given, e.g. by Daoud and de Gennes
[10], does not appear to be feasible. The one thing we can say with certainty, is that
in a AS versus pg- diagram, both saws and rRrws display nearly the same slope. A
In[—AST] versus In pg plot, not reproduced here, shows that saws scale with respect to
o, with a power which is equal or perhaps somewhat larger than that of RFws,

Regarding now PV/KT, the number equivalent m of independent small molecules
which will produce the same pressure as one sSAw or RFw chain is given in table 5. The
PV/KT data have been obtained by expanding AS/K as a series in pJ~° ™’ (7 up to seven)
and deriving the series with respect to pg to obtain the pressure through equation (15},
Though this expansion does not contain the leading term pg?, it was empirically found
to vield the best fit, surely through compensation effects. It is seen from table 3 that
scaling is obeyed, and that PV/KT is about the same for saws and rFws for equal
values of po. m1 is about 2 for py equal to 1, and about 5 for p; equal to 0.5, It is
expected that as po decreases below this value, (PV/KT)saw would increase much more
steeply than (PV/KT)rrw, because of the excluded volume of saws. A mc analysis of
this expectation ts however difficult, because for small radii the smali number of bounded
lattice sites yields data which vary erratically and cannot be used.

The results in table 3 will now be compared with the Edwards-Freed (gF) theory
for the pressure exercised by a random flight chain on the walls of a cubic box [3]. If
the step length is ascribed the value 1, as is the case in the present work. the EF theory
leads to an equation which may be wrilten in present notation as

(PV/KT)rew= (7" /DIN/ V2= (x¥ D[/ VY (27)

where V¥ is ihe volume of the cubic box. If we assume that the above relationship
remains valid for a spherical boundary and replace V by (4/3)x R?, making also the
conversion to the reduced variable po= R/{¥> used here. one obtains

(PV/KTYrrw= 1.226[{r*> /(> pa? = 1.49p7> (28)

where (¥*)/{r>* has been replaced by its limiting value 1.178. From table 3, considering
the mean values of (PV/KT)gprw for 18, 38 and 58 steps, in the range 0.6< py <4.0,
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Table 5. Number equivalent m of small independent molecules, which will produce the
same pressure as a single RFw chain, as a function of po*, where py is the reduced radius
of the confining sphere

P 40 30 2.0 1.5 1.2 1.0 0.8 0.6
po? 00625 G111 0.25 0.4444 0.6944 1.0 1.5625 27717
nr 111 1.16 1.30 1.50 1.82 2.07 2.65 338

one finds the number equivalent 7 of small molecules given in table 5. The data in this
table yield a straight line of slope nearly 1 and correlation coefficient 1.000. Thus, it
appears that in accord with the EF theory, s varies linearly with pg %, but the mc slope
is only 1, instead of 1.5. We do not know if this discrepancy originates in the different
geometric form of the bounding surface, or in some other reason.

Finally, regarding gel permeation chromatography, the findings in the present paper
do not lead to a unique conclusion. In a theta solvent, polymer chains recover the
dimensions of RFw chains of the same number of steps, and can most aptly be described
as pseudo-rFws. There is then no reason not to assume that the Casassa theory is an
adequate description of actual phenomena. In an athermal solvent, on the other hand,
the behaviour of polymer chains will approximately approach that of the saws here
consideredf. In this case, the reduced diameter of the pores is not that applying to
rFws, and the Casassa theory will overestimate the ease with which polymer chains
enler pores, and thus the partition coefficient Q. However, the theory can in this case
be corrected, to a fair or good degree of approximation. by a simple renormalization
of the pore diameters. The error involved when so doing may be estimated, according
to the parameter involved, from the tables and figures of this paper and those of [1].
Intermediate situations between good and theta solvents may be treated accordingly.

5. Conclusions

Provided that proper reduction lengths are used for N-step confined saws and RFws
(N and 0.922N%*, respectively), then for equal values of the reduced radii of the
confining spheres, both these walks exhibil very comparable behaviours for all the
quantities investigated in the present and in the previous paper [1]. These quantitics
include chain dimensions, concentration profiles, entropy change upon confinement,
and pressure exercised by the confined walk (=chain) on the confining boundary. On
the other hand, if identical values for the dimensions of the confining geometries are
considered (which means that the reduced dimensions are now different), then the
behaviours of confined sAws and rFws are no longer comparable,

Thus, il appears that one can derive, to a fair and perhaps sometimes good degree
of approximation, the properties of confined saws inside spheres, from the analytically
more traclable theory of confined rFws, through a simple renormalization of lengths.
This simple result will not in general apply to other confining geometries, in particular
when at least one dimension remains infinite.

t Only approximately approach, because the energy of interaction between polymer segments lying far apart
along the chain is in lact a free energy, and therefore, even in an athermal solvent, there will be a non-zero
free energy of interaction.
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